Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-[Bis(1H-indol-3-yl)methyl]benzonitrile

Xiang Deng,* Di Wu, Xiaomei Huang and Feihua Luo

Department of Chemistry and Chemical Engineering, Sichuan University of Arts and Science. Sichuan Key Laboratory of Characteristic Plant Development Research, Sichuan Dazhou 635000, People's Republic of China Correspondence e-mail: qwj616@swu.edu.cn

Received 9 May 2011; accepted 28 May 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.110; data-to-parameter ratio = 13.0.

In the title molecule, $C_{24}H_{17}N_3$, the didhedral angles formed by the mean planes of the indole ring systems and the benzene ring are 86.44 (7) and 86.96 (7) $^{\circ}$. The dihedral angle between the two indole ring systems is 72.08 (6)°. In the crystal, intermolecular bifurcated $(N-H)_2 \cdots N$ hydrogen bonds link molecules into sheets lying parallel to (010).

Related literature

For background and the biological activity of bisindolylalkanes and their derivatives, see: Bell et al. (1994). For related structures, see: Govindasamy et al. (1998); Krishna, Velmurugan, Babu & Perumal (1999); Krishna, Velmurugan & Shanmuga Sundara (1999); Seetharaman & Rajan (1995). For standard bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

$\begin{array}{l} C_{24} H_{17} N_3 \\ M_r = 347.41 \\ \text{Monoclinic, } P_{2_1/c} \\ a = 9.5882 \ (12) \ \text{\AA} \\ b = 19.155 \ (3) \ \text{\AA} \\ c = 10.3801 \ (13) \ \text{\AA} \\ \beta = 100.562 \ (3)^{\circ} \end{array}$	V = 1874.1 (4) Å ³ Z = 4 Mo K α radiation $\mu = 0.07 \text{ mm}^{-1}$ T = 296 K $0.20 \times 0.15 \times 0.09 \text{ mm}$
Data collection	
Bruker SMART CCD diffractometer	3292 independent reflections 2613 reflections with $I > 2\sigma(I)$
14081 measured reflections	$R_{\rm int} = 0.036$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.110$ S = 1.05	H atoms treated by a mixture of independent and constrained refinement
3292 reflections	$\Delta \rho_{\rm max} = 0.15 \text{ e } \text{\AA}^{-3}$
253 parameters	$\Delta \rho_{\rm min} = -0.13 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
$N3-H3A\cdots N1^{i}$	0.86 (2)	2.22 (2)	3.084 (2)	178.6 (18)
$N2-H2A\cdots N1^{ii}$	0.91 (2)	2.34 (2)	3.206 (2)	160.3 (19)

Symmetry codes: (i) x + 1, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (ii) x + 1, $-y + \frac{1}{2}$, $z + \frac{1}{2}$.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

We are grateful to the Key Program of the Education Department of Sichuan Province (grant No. 10ZA143) and Youth Foundation of the Education Department of Sichuan Province (grant No.10ZB105) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5252).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bell, R., Carmeli, S., Sar, N. & Vibrindole, A. (1994). J. Nat. Prod. 57, 1587-1590
- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Govindasamy, L., Velmurugan, D., Ravikumar, K. & Mohanakrishnan, A. K. (1998). Acta Cryst. C54, 635-637.
- Krishna, R., Velmurugan, D., Babu, G. & Perumal, P. T. (1999). Acta Cryst. C55, 75-78.
- Krishna, R., Velmurugan, D. & Shanmuga Sundara, S. (1999). Acta Cryst. C55, IUC9900084.

Seetharaman, J. & Rajan, S. S. (1995). Acta Cryst. C51, 78-80.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2011). E67, o1603 [doi:10.1107/S1600536811020411]

4-[Bis(1*H*-indol-3-yl)methyl]benzonitrile

X. Deng, D. Wu, X. Huang and F. Luo

Comment

Bisindolylalkanes and their derivatives constitute an important group of bioactive metabolites of terrestrial and marine origin (Bell *et al.*, 1994). We report here the crystal structure of the title compound (I). In the molecular structure, (Fig. 1) the bond lengths (Allen *et al.*, 1987) and and angles are within normal ranges and those in the indole group are in agreement with related structures (Govindasamy *et al.*, 1998; Krishna, Velmurugan, Babu & Perumal, 1999; Krishna, Velmurugan & Shanmuga Sundara, 1999; Seetharaman & Rajan, 1995). The didhedral angles formed by the mean planes of the indole ring systems and the benzene ring are 86.44 (7) and 86.96 (7)°. The dihedral angle between the two indole ring systems is 72.08 (6)°. In the crystal, intermolecular bifurcated (N—H)x2···N hydrogen bonds link molecules into two-dimensional sheets parallel to (010) (Fig. 2).

Experimental

A mixuture of 4-cyanobenzaldehyde (1 mmol), indole (2 mmol) and I₂ (0.2 mmol) in acetonitrile (10 ml) was stirred at room temperature for a few s. After completion of the reaction, the mixture treated with aq. Na₂S₂O₃ solution (5%, 10 ml) and the product was extracted with ethyl acetate (3×5 ml). The combined organic layer was dried with anhydrous sodium sulfate, concentrated *in vacuo* and purified by column chromatography (ethyl acetate: petroleum ether=1:9) to afford the pure product. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a methanol solution.

Refinement

H atoms bonded to C atoms were placed in calculated positions and refined in a riding-model approximation with C—H = 0.93 Å and $U_{iso}(H)=1.2Ueq(C)$. The H atoms bonded to N atoms were refined independently with isotropic displacement parameters.

Figures

Fig. 1. The molecular structure of the title compound with 30% probability ellipsoids.

Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines. Only H atoms involved in the hydrogen bonds are shown.

4-[Bis(1H-indol-3-yl)methyl]benzonitrile

C ₂₄ H ₁₇ N ₃	F(000) = 728
$M_r = 347.41$	$D_{\rm x} = 1.231 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3543 reflections
a = 9.5882 (12) Å	$\theta = 2.9 - 24.6^{\circ}$
<i>b</i> = 19.155 (3) Å	$\mu = 0.07 \text{ mm}^{-1}$
c = 10.3801 (13) Å	T = 296 K
$\beta = 100.562 \ (3)^{\circ}$	Block, colourless
$V = 1874.1 (4) \text{ Å}^3$	$0.20\times0.15\times0.09~mm$
Z = 4	

Data collection

Bruker SMART CCD diffractometer	2613 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.036$
graphite	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
φ and ω scans	$h = -11 \rightarrow 11$
14081 measured reflections	$k = -22 \rightarrow 22$
3292 independent reflections	$l = -12 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.110$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0494P)^{2} + 0.3483P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{max} < 0.001$
3292 reflections	$\Delta \rho_{max} = 0.15 \text{ e } \text{\AA}^{-3}$
253 parameters	$\Delta \rho_{min} = -0.13 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}

Primary atom site location: structure-invariant direct Extinction coefficient: 0.030 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.58636 (15)	0.10803 (8)	0.05439 (14)	0.0403 (4)
H1	0.5637	0.0581	0.0542	0.048*
C2	0.62867 (15)	0.12277 (7)	-0.07541 (15)	0.0403 (4)
C3	0.54762 (15)	0.10350 (8)	-0.20061 (15)	0.0421 (4)
C4	0.41722 (17)	0.06995 (9)	-0.23996 (16)	0.0520 (4)
H4	0.3633	0.0566	-0.1782	0.062*
C5	0.3700 (2)	0.05705 (10)	-0.37001 (18)	0.0652 (5)
Н5	0.2839	0.0342	-0.3963	0.078*
C6	0.4482 (2)	0.07750 (11)	-0.46368 (19)	0.0690 (5)
Н6	0.4132	0.0685	-0.5517	0.083*
C7	0.5762 (2)	0.11079 (10)	-0.42865 (17)	0.0627 (5)
H7	0.6286	0.1242	-0.4915	0.075*
C8	0.62532 (16)	0.12383 (8)	-0.29631 (16)	0.0467 (4)
C9	0.74842 (16)	0.15361 (8)	-0.10002 (17)	0.0477 (4)
Н9	0.8208	0.1714	-0.0365	0.057*
C10	0.70384 (15)	0.11951 (8)	0.16965 (15)	0.0419 (4)
C11	0.82977 (15)	0.07764 (8)	0.20221 (15)	0.0425 (4)
C12	0.88333 (17)	0.02088 (9)	0.14286 (17)	0.0526 (4)
H12	0.8366	0.0042	0.0623	0.063*
C13	1.00687 (19)	-0.01001 (10)	0.2058 (2)	0.0657 (5)
H13	1.0432	-0.0481	0.1674	0.079*
C14	1.0784 (2)	0.01494 (11)	0.3263 (2)	0.0686 (5)
H14	1.1610	-0.0073	0.3671	0.082*
C15	1.02992 (19)	0.07111 (11)	0.38510 (18)	0.0624 (5)
H15	1.0783	0.0878	0.4650	0.075*
C16	0.90608 (16)	0.10251 (9)	0.32187 (15)	0.0496 (4)
C17	0.71121 (17)	0.16730 (9)	0.26731 (16)	0.0517 (4)
H17	0.6434	0.2015	0.2715	0.062*
C18	0.45208 (15)	0.14628 (8)	0.07105 (15)	0.0422 (4)
C19	0.42852 (19)	0.21445 (10)	0.0326 (2)	0.0742 (6)
H19	0.4949	0.2373	-0.0072	0.089*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

0.3091 (2)	0.24975 (10)	0.0516 (2)	0.0786 (7)
0.2961	0.2962	0.0262	0.094*
0.20928 (16)	0.21613 (9)	0.10831 (17)	0.0528 (4)
0.23052 (18)	0.14779 (10)	0.14648 (19)	0.0647 (5)
0.1631	0.1246	0.1846	0.078*
0.35136 (17)	0.11352 (9)	0.12836 (17)	0.0569 (5)
0.3653	0.0673	0.1554	0.068*
0.08275 (18)	0.25223 (10)	0.12602 (18)	0.0602 (5)
-0.01856 (16)	0.28075 (10)	0.13748 (17)	0.0757 (5)
0.83216 (15)	0.15817 (8)	0.35857 (15)	0.0585 (4)
0.856 (2)	0.1831 (12)	0.434 (2)	0.088 (7)*
0.74724 (15)	0.15470 (7)	-0.23225 (15)	0.0539 (4)
0.814 (2)	0.1722 (10)	-0.2680 (19)	0.069 (6)*
	0.3091 (2) 0.2961 0.20928 (16) 0.23052 (18) 0.1631 0.35136 (17) 0.3653 0.08275 (18) -0.01856 (16) 0.83216 (15) 0.856 (2) 0.74724 (15) 0.814 (2)	0.3091(2) $0.24975(10)$ 0.2961 0.2962 $0.20928(16)$ $0.21613(9)$ $0.23052(18)$ $0.14779(10)$ 0.1631 0.1246 $0.35136(17)$ $0.11352(9)$ 0.3653 0.0673 $0.08275(18)$ $0.25223(10)$ $-0.01856(16)$ $0.28075(10)$ $0.83216(15)$ $0.15817(8)$ $0.856(2)$ $0.1831(12)$ $0.74724(15)$ $0.1722(10)$	0.3091(2) $0.24975(10)$ $0.0516(2)$ 0.2961 0.2962 0.0262 $0.20928(16)$ $0.21613(9)$ $0.10831(17)$ $0.23052(18)$ $0.14779(10)$ $0.14648(19)$ 0.1631 0.1246 0.1846 $0.35136(17)$ $0.11352(9)$ $0.12836(17)$ 0.3653 0.0673 0.1554 $0.08275(18)$ $0.25223(10)$ $0.12602(18)$ $-0.01856(16)$ $0.28075(10)$ $0.13748(17)$ $0.83216(15)$ $0.15817(8)$ $0.35857(15)$ $0.856(2)$ $0.15470(7)$ $-0.23225(15)$ $0.814(2)$ $0.1722(10)$ $-0.2680(19)$

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0363 (8)	0.0372 (8)	0.0485 (9)	0.0003 (6)	0.0109 (7)	0.0017 (7)
C2	0.0330 (7)	0.0403 (8)	0.0488 (9)	0.0030 (6)	0.0102 (7)	0.0026 (7)
C3	0.0387 (8)	0.0405 (8)	0.0478 (9)	0.0061 (7)	0.0101 (7)	0.0065 (7)
C4	0.0448 (9)	0.0555 (10)	0.0540 (10)	-0.0033 (8)	0.0051 (8)	0.0092 (8)
C5	0.0619 (11)	0.0678 (12)	0.0594 (12)	-0.0042 (9)	-0.0057 (9)	0.0031 (9)
C6	0.0797 (14)	0.0726 (13)	0.0498 (11)	0.0064 (11)	-0.0007 (10)	0.0013 (9)
C7	0.0752 (13)	0.0673 (12)	0.0496 (11)	0.0144 (10)	0.0219 (9)	0.0124 (9)
C8	0.0446 (9)	0.0450 (9)	0.0530 (10)	0.0077 (7)	0.0152 (7)	0.0085 (7)
C9	0.0383 (8)	0.0484 (9)	0.0574 (10)	-0.0027 (7)	0.0118 (7)	0.0019 (7)
C10	0.0369 (8)	0.0449 (9)	0.0455 (9)	-0.0026 (6)	0.0119 (7)	0.0005 (7)
C11	0.0366 (8)	0.0479 (9)	0.0443 (9)	-0.0022 (7)	0.0110 (7)	0.0054 (7)
C12	0.0470 (9)	0.0536 (10)	0.0576 (10)	0.0024 (8)	0.0109 (8)	0.0013 (8)
C13	0.0561 (11)	0.0599 (11)	0.0824 (14)	0.0144 (9)	0.0163 (10)	0.0089 (10)
C14	0.0497 (10)	0.0788 (14)	0.0744 (13)	0.0089 (10)	0.0035 (10)	0.0259 (11)
C15	0.0503 (10)	0.0829 (14)	0.0511 (10)	-0.0064 (10)	0.0017 (8)	0.0153 (10)
C16	0.0430 (9)	0.0604 (10)	0.0465 (9)	-0.0070 (8)	0.0110 (7)	0.0066 (8)
C17	0.0434 (9)	0.0565 (10)	0.0567 (10)	-0.0002 (8)	0.0131 (8)	-0.0054 (8)
C18	0.0351 (8)	0.0442 (9)	0.0483 (9)	-0.0013 (6)	0.0108 (7)	0.0011 (7)
C19	0.0574 (11)	0.0509 (11)	0.1275 (18)	0.0076 (9)	0.0519 (12)	0.0222 (11)
C20	0.0654 (12)	0.0509 (11)	0.1321 (19)	0.0138 (9)	0.0516 (13)	0.0227 (11)
C21	0.0400 (9)	0.0618 (11)	0.0593 (10)	0.0086 (8)	0.0163 (8)	0.0024 (8)
C22	0.0508 (10)	0.0704 (12)	0.0821 (13)	0.0072 (9)	0.0362 (9)	0.0218 (10)
C23	0.0503 (10)	0.0539 (10)	0.0723 (12)	0.0079 (8)	0.0264 (9)	0.0198 (9)
C24	0.0460 (10)	0.0738 (12)	0.0634 (12)	0.0099 (9)	0.0171 (8)	0.0044 (9)
N1	0.0533 (9)	0.0929 (13)	0.0860 (12)	0.0226 (9)	0.0265 (8)	0.0099 (9)
N2	0.0539 (9)	0.0728 (10)	0.0486 (9)	-0.0063 (8)	0.0088 (7)	-0.0127 (8)
N3	0.0445 (8)	0.0587 (9)	0.0643 (10)	-0.0013 (7)	0.0253 (7)	0.0109 (7)

Geometric parameters (Å, °)

C1—C10	1.502 (2)	C12—H12	0.9300
C1—C2	1.503 (2)	C13—C14	1.396 (3)

C1—C18	1.519 (2)	С13—Н13	0.9300
C1—H1	0.9800	C14—C15	1.361 (3)
С2—С9	1.356 (2)	C14—H14	0.9300
C2—C3	1.435 (2)	C15—C16	1.384 (2)
C3—C4	1.399 (2)	С15—Н15	0.9300
C3—C8	1.402 (2)	C16—N2	1.372 (2)
C4—C5	1.366 (2)	C17—N2	1.368 (2)
C4—H4	0.9300	С17—Н17	0.9300
C5—C6	1.389 (3)	C18—C19	1.372 (2)
С5—Н5	0.9300	C18—C23	1.375 (2)
C6—C7	1.371 (3)	C19—C20	1.375 (2)
С6—Н6	0.9300	С19—Н19	0.9300
С7—С8	1.391 (2)	C20—C21	1.373 (2)
С7—Н7	0.9300	C20—H20	0.9300
C8—N3	1.369 (2)	C21—C22	1.372 (2)
C9—N3	1.371 (2)	C21—C24	1.437 (2)
С9—Н9	0.9300	C22—C23	1.374 (2)
C10—C17	1.358 (2)	C22—H22	0.9300
C10—C11	1.437 (2)	С23—Н23	0.9300
C11—C12	1.393 (2)	C24—N1	1.140 (2)
C11—C16	1.404 (2)	N2—H2A	0.91 (2)
C12—C13	1.377 (2)	N3—H3A	0.86 (2)
C10—C1—C2	113.60 (12)	С12—С13—Н13	119.4
C10-C1-C18	111.50 (12)	C14—C13—H13	119.4
C2—C1—C18	112.65 (12)	C15—C14—C13	121.38 (17)
С10—С1—Н1	106.1	C15—C14—H14	119.3
C2—C1—H1	106.1	C13—C14—H14	119.3
C18—C1—H1	106.1	C14—C15—C16	117.70 (17)
C9—C2—C3	106.14 (13)	C14—C15—H15	121.2
C9—C2—C1	128.86 (14)	C16—C15—H15	121.2
C3—C2—C1	124.97 (13)	N2-C16-C15	130.37 (17)
C4—C3—C8	118.91 (15)	N2-C16-C11	107.29 (14)
C4—C3—C2	133.59 (14)	C15-C16-C11	122.30 (17)
C8—C3—C2	107.49 (13)	C10-C17-N2	110.63 (15)
C5—C4—C3	119.26 (16)	С10—С17—Н17	124.7
C5—C4—H4	120.4	N2-C17-H17	124.7
C3—C4—H4	120.4	C19—C18—C23	117.96 (14)
C4—C5—C6	121.14 (18)	C19—C18—C1	121.60 (13)
C4—C5—H5	119.4	C23—C18—C1	120.43 (14)
С6—С5—Н5	119.4	C18—C19—C20	121.58 (16)
C7—C6—C5	121.16 (18)	C18—C19—H19	119.2
С7—С6—Н6	119.4	С20—С19—Н19	119.2
С5—С6—Н6	119.4	C21—C20—C19	119.69 (17)
C6—C7—C8	118.03 (17)	С21—С20—Н20	120.2
С6—С7—Н7	121.0	С19—С20—Н20	120.2
С8—С7—Н7	121.0	C22—C21—C20	119.55 (15)
N3—C8—C7	131.44 (16)	C22—C21—C24	120.41 (16)
N3—C8—C3	107.05 (14)	C20—C21—C24	120.04 (16)
C7—C8—C3	121.50 (16)	C21—C22—C23	120.03 (15)

supplementary materials

C2-C9-N3	110.08 (15)	С21—С22—Н22		120.0
С2—С9—Н9	125.0	C23—C22—H22		120.0
N3-C9-H9	125.0	C22—C23—C18		121.19(16)
C17 - C10 - C11	105 91 (14)	C22—C23—H23		119.4
C17—C10—C1	128 49 (14)	C18—C23—H23		119.4
C_{11} $-C_{10}$ $-C_{1}$	125.50(13)	N1-C24-C21		178 7 (2)
C12—C11—C16	118 77 (14)	C17 - N2 - C16		108.82(14)
C12 - C11 - C10	133.90 (15)	C17—N2—H2A		125 3 (14)
C16-C11-C10	107 31 (14)	C16-N2-H2A		125.7 (14)
C13 - C12 - C11	118 70 (17)	C8 - N3 - C9		109 24 (13)
C13 - C12 - H12	120.7	C8—N3—H3A		126 3 (13)
C11 - C12 - H12	120.7	C9—N3—H3A		124 4 (13)
C12-C13-C14	121 11 (18)	0, 10 1011		12(12)
	-10.2(2)	C11 C12 C12 C14		-0.5 (2)
C10 - C1 - C2 - C9	-10.3(2)	C12 - C12 - C13 - C14		-0.3(3)
C18 - C1 - C2 - C9	117.73(17) 1(7.20(12))	C12-C13-C14-C15		-0.8(3)
C10 - C1 - C2 - C3	10/.50(15)	C13 - C14 - C15 - C16		0.5(3)
$C_{18} - C_{1} - C_{2} - C_{3}$	-64.69 (18)	C14 - C15 - C16 - N2		1/8.63 (1/)
$C_{9} = C_{2} = C_{3} = C_{4}$	1/9.30 (17)	C14 - C15 - C16 - C11		1.1(2)
C1 - C2 - C3 - C4	1.3 (3)	C12 - C11 - C16 - N2		1/9.62 (14)
$C_{2} = C_{2} = C_{3} = C_{8}$	0.43 (16)	C10-C11-C16-N2		-1.61(1/)
C1 - C2 - C3 - C8	-1//.61(13)	C12-C11-C16-C15		-2.3(2)
$C_{8} - C_{3} - C_{4} - C_{5}$	0.9 (2)	C10-C11-C16-C15		1/6.45 (14)
$C_2 - C_3 - C_4 - C_5$	-1//.91(16)	C11 - C10 - C17 - N2		-0.21(18)
C_{3} C_{4} C_{5} C_{6}	-0.9(3)	CI = CI0 = CI / = N2		1/6.26 (14)
C4 - C5 - C6 - C7	0.6 (3)	C10-C1-C18-C19		87.1 (2)
$C_{5} - C_{6} - C_{7} - C_{8}$	-0.3(3)	C2—C1—C18—C19		-42.0 (2)
C6-C7-C8-N3	179.15 (17)	C10-C1-C18-C23		-91.44 (18)
$C_{6} - C_{7} - C_{8} - C_{3}$	0.3 (3)	C2-C1-C18-C23		139.46 (16)
C4—C3—C8—N3	-179.68 (14)	C23—C18—C19—C20		0.7 (3)
C2—C3—C8—N3	-0.62 (17)	CI_CI8_CI9_C20		-177.84 (19)
C4—C3—C8—C7	-0.6 (2)	C18—C19—C20—C21		-1.1 (4)
C2_C3_C8_C7	178.47 (14)	C19—C20—C21—C22		0.6 (3)
C3—C2—C9—N3	-0.08 (17)	C19—C20—C21—C24		-178.70 (19)
C1—C2—C9—N3	177.86 (14)	C20—C21—C22—C23		0.2 (3)
C2—C1—C10—C17	115.39 (17)	C24—C21—C22—C23		179.56 (18)
C18—C1—C10—C17	-13.2 (2)	C21—C22—C23—C18		-0.6 (3)
C2—C1—C10—C11	-68.78 (18)	C19—C18—C23—C22		0.2 (3)
C18—C1—C10—C11	162.63 (13)	C1—C18—C23—C22		178.74 (16)
C17—C10—C11—C12	179.63 (17)	C10—C17—N2—C16		-0.81 (19)
C1—C10—C11—C12	3.0 (3)	C15—C16—N2—C17		-176.35 (17)
C17—C10—C11—C16	1.12 (17)	C11—C16—N2—C17		1.50 (18)
C1—C10—C11—C16	-175.49 (14)	C7—C8—N3—C9		-178.39 (17)
C16—C11—C12—C13	2.0 (2)	C3—C8—N3—C9		0.58 (17)
C10-C11-C12-C13	-176.41 (16)	C2—C9—N3—C8		-0.32 (18)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N3—H3A···N1 ⁱ	0.86 (2)	2.22 (2)	3.084 (2)	178.6 (18)

N2—H2A…N1 ⁱⁱ	0.91 (2)	2.34 (2)	3.206 (2)	160.3 (19)
Symmetry codes: (i) $x+1$, $-y+1/2$, $z-1/2$; (ii) $x+1$, $-y+1/2$, $-y+1/2$, $-y+1/2$; $-y+$	-y+1/2, z+1/2.			

Fig. 1

Fig. 2

